Astatine

Seldom found in nature.

Atomic Number:

85

Atomic Symbol:

At

Atomic Weight:

210

Electron Configuration: [Xe]6s24f145d106p5

History

(Gr. astatos, unstable) Synthesized in 1940 by D.R. Corson, K.R. MacKenzie, and E. Segre at the University of California by bombarding bismuth with alpha particles. The longest-lived isotopes, with naturally occurring uranium and thorium isotopes, and traces of 217At are equilibrium with 233U and 239Np resulting from integration of thorium and uranium with naturally produced neutrons. The total amount of astatine present in the earth's crust, however, is less than 1 oz.

Uses

Krypton-85 has been used for over 25 years to measure the density of paper as it is amanufactured. The total weight of paper can be controlled to a very accurate degree by the use of krypton 85 and other radioactive nuclides. The common name for such a device is a beta gague that can measure the thickness of a material.

Production

Astatine can be produced by bombarding bismuth with energetic alpha particles to obtain the relatively long-lived 209-211At, which can be distilled from the target by heating in air.

Properties

The "time of flight" mass spectrometer has been used to confirm that this highly radioactive halogen behaves chemically very much like other halogens, particularly iodine. Astatine is said to be more metallic than iodine, and, like iodine, it probably accumulates in the thyroid gland. Workers at the Brookhaven National Laboratory have recently used reactive scattering in crossed molecular beams to identify and measure elementary reactions involving astatine.


Sources: CRC Handbook of Chemistry and Physics and the American Chemical Society.


Last Updated: 12/19/97